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Abstract. This paper concerns the Inventory Routing Problem (IRP)
which is an optimization problem addressing the optimization of trans-
portation routes and the inventory levels at the same time. The IRP
is notable for its difficulty - even finding feasible initial solutions poses
a significant problem.

In this paper an evolutionary algorithm is proposed that uses
approaches to solution construction and modification utilized by prac-
titioners in the field. The population for the EA is initialized starting
from a base solution which in this paper is generated by a heuristic, but
can as well be a solution provided by a domain expert. Subsequently,
feasibility-preserving moves are used to generate the initial population.
In the paper dedicated recombination and mutation operators are pro-
posed which aim at generating new solutions without loosing feasibility.
In order to reduce the search space, solutions in the presented EA are
encoded as lists of routes with the quantities to be delivered determined
by a supplying policy.

The presented work is a step towards utilizing domain knowledge
in evolutionary computation. The EA presented in this paper employs
mechanisms of solution initialization capable of generating a set of fea-
sible initial solutions of the IRP in a reasonable time. Presented opera-
tors generate new feasible solutions effectively without requiring a repair
mechanism.
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1 Introduction

The Inventory Routing Problem (IRP) is an extension of the Vehicle Rout-
ing Problem (VRP) in which routing optimization is performed jointly with
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inventory management optimization [1–3]. A solution of the IRP is a schedule
for a planning horizon of T days for a distribution of a single product provided by
a single supplier to a number of retailers. The supplier produces a given quantity
of the product each day and the retailers sell varying quantities of this product.
Both at the supplier and the retailers a limited storage to the product units is
available at a cost per unit per day varying from location to location.

The route-optimization part of the IRP is essentially a Vehicle Routing Prob-
lem (VRP) [4], because an optimal set of routes has to be found for a fleet of
vehicles delivering goods or services to various locations. In line with the VRP
each vehicle has a limited capacity and must supply goods to a number of loca-
tions satisfying demands of the retailers. The costs of travelling between locations
are typically provided in the form of a cost matrix and the total transportation
cost is calculated based on all the routes covered by the vehicles. The objective
in the VRP is to optimize the transportation cost for the entire fleet [5] and,
similarly, in the IRP the transportation cost is calculated for all the vehicles
together. Contrary to the VRP the daily demands of the retailers are not fixed
and the optimization algorithm has to decide what number of units to deliver
each day to satisfy the minimum required inventory level of all the retailers not
exceeding the available storage space limits. Also, the cost function represents
jointly the costs of storage and transportation so different solutions may trade
off one at the expense of the other.

The VRP, as a generalization of the Travelling Salesman Problem (TSP),
is an NP-hard problem, and, naturally, so is the IRP. One of the difficulties
that distinguish the IRP and the VRP from the TSP is the presence of multi-
ple constraints. In the context of metaheuristic methods this fact necessitates
using techniques that ensure feasibility of solutions, such as repair procedures
or feasibility-preserving operators.

In the literature various extensions of the regular IRP are defined and studied
which arise in real-life applications. For example, in paper [6] the Inventory-
Routing Problem with Transshipment (IRPT) was introduced. In this variant of
the problem it is allowed to move goods from one retailer to another - a possibility
which is useful in the case of numerous sales points of the same retailer. In real
life the demands cannot be predicted exactly introducing non-determinism to the
problem. Paper [7] introduced the Stochastic Inventory Routing Problem (SIRP)
in the context of designing a logistics system for collecting infectious medical
wastes. In a location IRP not only are the routes and deliveries optimized, but
also the locations of warehouses [8].

Approaches used for solving the IRP include formulating the IRP as an inte-
ger programming problem and solving it using methods such as the branch-and-
cut algorithm [9]. In papers which tackle real-life applications it is common to
use heuristic approaches which use practitioners’ experience to construct accept-
able solutions. Some well-known heuristics include starting with a solution that
serves the retailers with small inventories (who, because of a small storage space
available and large sells have to be served every day) using separate vehicles.
Such a solution is subsequently modified by adding the remaining retailers,
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swapping retailers between vehicles, decreasing/increasing the amount of prod-
uct to deliver, etc. Other heuristics construct solutions by determining, for each
retailer, the latest day when it must be supplied to avoid shortage of the prod-
uct in its inventory and then progressively move the deliveries to earlier dates in
order not to overload the vehicles. Paper [10] presents a comparison of a number
of heuristics for the IRP, focusing especially on replenishment strategies, but also
studying the IRP in the context of an integrated Production Inventory Distribu-
tion Routing Problem (PIDRP). Metaheuristic approaches to the IRP include
evolutionary algorithms [8], hybrid methods, for example combining simulated
annealing and direct search [11] and tabu search [12]. For stochastic optimization
problems a common approach is to use simheuristics - hybrid algorithms com-
bining simulation and heuristics [13]. This approach for the stochastic version of
the IRP was used in [14].

2 Problem Definition

In this paper, we consider the IRP concerning delivering a single product from
a supplier facility S to a given number n of retailer facilities R1, R2, . . . , Rn by
a fleet of v vehicles of a fixed capacity C. The supplier S produces p0 items of the
product each day. Each retailer Ri, for i = 1, 2, . . . , n, sells pi items of the product
each day. The supplier has a local inventory, where the product may be stored,
with an initial level of l

(init)
0 items at the date t = 0 and with lower and upper

limits for the inventory level equal to l
(min)
0 and l

(max)
0 , respectively. Storing the

product in the supplier inventory is charged with an inventory cost c0 per item
per day. Similarly, each retailer Ri, for i = 1, 2, . . . , n, has a local inventory,
where the product may be stored, with an initial level of l

(init)
i items at the date

t = 0 and with lower and upper limits for the inventory level equal to l
(min)
i

and l
(max)
i , respectively. Storing the product in the retailer inventory is charged

with an inventory cost ci per item per day. The IRP aims at determining the
plan of supplying the retailers minimizing the total cost, i.e. for a given planning
horizon T , for each date t = 1, 2, . . . , T , the retailers to supply at the date t must
be chosen, an amount of the product to deliver to each of these retailers must be
determined, and the route of each supplying vehicle must be defined. Formally,
the solution is a pair (R,Q), where R = (r1, r2, . . . , rT ) is a list of routes in the
successive dates t = 1, 2, . . . , T (each route is a permutation of a certain subset
of retailers), and Q ∈ R

n×T is a matrix of column vectors q1,q2, . . . ,qT defining
the quantities to deliver to each retailer in the successive dates t = 1, 2, . . . , T (if
a retailer is not included in the route at the date t, the corresponding quantity
encoded in the vector rt equals 0). The cost of the solution is the sum of the
inventory costs and the transportation costs, i.e.

cost(solution) =
T+1∑

t=1

(lt0 · c0 +
n∑

i=1

lti · ci) +
T∑

t=1

transportation-costt, (1)
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where lt0 denotes the inventory level of the supplier S at the date t, lti denotes
the inventory level of the retailer Ri at the date t, and transportation-costt

denotes the transportation costs for the supplying vehicle at the date t. The
transportation cost is determined by the route of the vehicles and a given distance
matrix defining the transportation costs between each two facilities.

An example of an IRP instance, with n = 10 retailers, the planning horizon
T = 3, and a fleet of one vehicle, as well as the optimal solution, is presented in
Table 1 and Fig. 1. Table 1 contains the details on lower and upper limits for the
inventory level, the inventory costs, the amount of the daily production at the
supplier facility, the amount of the daily consumption at the retailers facilities,
and the level of inventories at the successive dates of the planning horizon for
the optimal solution. Figure 1 (a) presents the location of the facilities. Figure 1
(b)–(d) presents the routes for the successive dates of the planning horizon.
The inventory cost for the successive dates is 76.4, 76.47, 76.52, and 75.98. The
transportation cost for successive dates is 531, 1237, 94. Therefore, the total
solution cost is 2167.37.

Table 1. Illustration of the definition of the IRP - levels of inventories

S R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

Min inv. level 0 0 0 0 0 0 0 0 0 0 0

Max inv. level - 174 28 258 150 126 138 237 129 154 189

Inv. cost 0.03 0.02 0.03 0.03 0.02 0.02 0.03 0.04 0.04 0.02 0.04

Production 635 - - - - - - - - - -

Consumption - 87 14 86 75 42 69 79 43 77 63

Inv. at t = 0 1583 87 14 172 75 84 69 158 86 77 126

Inv. at t = 1 2003 0 0 86 75 42 0 79 43 77 126

Inv. at t = 2 1721 87 14 172 0 84 69 158 86 77 63

Inv. at t = 3 2206 0 0 86 75 42 0 79 43 0 0

3 Evolutionary Approach

In this paper, we propose an evolutionary approach to solving the IRP based
on an evolutionary algorithm with dedicated operators based on the knowledge
of practitioners in the field. As even simple instances of the IRP are difficult
to solve with regular heuristic search methods without additional knowledge
on supplying policies, routing strategies, etc. (in many cases, even generating
feasible solutions for the initial population is a challenge), the proposed approach
uses some popular practitioner techniques to generate feasible solutions first
(for the initial population) and to transform solutions without breaking their
feasibility (in the mutation operators).
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Fig. 1. Illustration of the definition of the IRP - routes in the optimal solution

Algorithm 1 presents the framework of the Evolutionary Algorithm with
Practitioner’s Knowledge Operators for Inventory Routing Problem (EA-PKO-
IRP). It generates an initial population P1 and evolves it during τ iterations. In
each iteration, the current population Pt is evaluated, the offspring population
P ′

t is created, and the next population Pt+1 is selected from the union of Pt

and P ′
t .

Algorithm 1. EA-PKO-IRP
P1 = Initial-Population(N)
for t = 1 → τ do

Evaluate(Pt)
P ′
t = ∅

for k = 1 → M do
Parent-Solutions = Parent-Selection(Pt)
Offpring-Solution = Recombination(Parent-Solutions)
Offpring-Solution = Date-Changing-Mutation(Offpring-Solution)
Offpring-Solution = Order-Changing-Mutation(Offpring-Solution)
P ′
t = P ′

t ∪ {Offpring-Solution}
end for
Pt+1 = Replacement(Pt ∪ P ′

t )
end for
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3.1 Search Space and Solution Encoding

As described in Sect. 2, a solution to the IRP is a pair (R,Q) consisting of a list of
routes R = (r1, r2, . . . , rT ) for each date and the quantities Q = [q1,q2, . . . ,qT ]
to deliver to each retailer in each date of the planning horizon. In this paper,
as in many practical approaches, the quantities to deliver are determined by
a general supplying policy and are not defined individually, therefore the can-
didate solution in the evolutionary algorithm is the list of routes R only. The
quantities Q are defined by a supplying policy, the up-to-level supplying policy,
that assumes that each retailer is always supplied up to the upper level of its
inventory (or not supplied at all, if it is not included in the route of any vehi-
cle for the considered date). Certainly, the supplying policy may limit the IRP
problem, but it is frequently used in solving the IRP and usually succeeds in
providing efficient solutions.

3.2 Initial Population

The initial population is defined on the basis of a base solution. The base solution
is constructed according to a strategy commonly used in practice that tries to
supply each retailer at the latest date before the shortage of its inventory. The
initial population consists of mutated copies of the base solution.

The base solution is constructed in the following manner: For each date
t = 1, 2, . . . , T , a set Rt of retailers that must be supplied at the date t to avoid
the shortage of its inventory at the next date t+1 is determined. The quantities
to deliver are determined according to the up-to-level supplying policy, i.e. the
retailer is always supplied up to the upper level of its inventory. The routes of
the vehicles are determined in a greedy manner: Each retailer R from the set
Rt is considered in turn (in a random order). For each vehicle j = 1, 2, . . . , v,
an attempt to add the retailer R to the route of the vehicle j is made, if the
total capacity of the vehicle does not exceed the maximum capacity. The retailer
R is added between the supplier node and the first node on the route and the
transportation cost is evaluated. Then, the retailer R is shifted between the
first and the second node on the original route and the transportation cost
is evaluated, etc. Finally, the retailer R is assigned to the vehicle and to the
position on the route of the vehicle that has the minimal transportation cost. It
may happen that there are no vehicles to consider, because all the vehicles are
overloaded. Then, the strategy tries to shift the retailer to an earlier date and
find, in a similar manner, a route to add it.

3.3 Recombination Operator

The recombination operator takes T parent solutions R(1),R(2), . . . ,R(T ), where
T is the planning horizon, and produces one offspring solution R̃ in such a way
that

r̃i = r(πi)
i , for i = 1, 2, . . . , T, (2)
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where π = (π1, π2, . . . , πT ) is a random permutation of the indices 1, 2, . . . , T
of the parent solutions R(1),R(2), . . . ,R(T ). If such an offspring solution is not
feasible, the procedure is repeated anew (with a different permutation π), up to
κR times (κR is a constant parameter of the algorithm), otherwise the offspring
solution is a copy of a parent solution randomly chosen with the same probability
of being chosen for each parent equal to 1/T .

It is worth noticing that at the beginning of the algorithm, when the candi-
date solutions in the population are usually very different, many produced off-
spring solutions are infeasible, because the parts of different parent solutions are
usually contradictory and cannot be combined into a feasible solution. However,
when the population becomes more homogeneous, the parts of parent solutions
are usually similar, so many produced offspring solutions are feasible.

3.4 Date-Changing Mutation (DM)

The mutation operators takes one solution R and modifies it in the following
manner: First, a date t is randomly chosen with the uniform distribution over
the dates 2, 3, . . . , T . Next, a retailer R is randomly chosen from the retailers
assigned to service at the date t, i.e. from the route rt. The retailer R is removed
from the route rt and all the routes for all the further dates. Next, a date t′

is randomly chosen with the uniform distribution over the dates 1, 2, . . . , t − 1.
The retailer R is assigned to service at the date t′ and added to the route rt′ in
a greedy manner, as in creating the base solution described in Sect. 3.2. Similarly
to creating the base solution, the further latest dates when the retailer R must
be supplied to avoid the shortage of its inventory are determined, and the retailer
R is added to the proper routes. If such a modified solution is not feasible, the
procedure is repeated anew, up to κM times (κM is a constant parameter of the
algorithm), otherwise the original solution remains unchanged.

It is worth noticing that the mutation operator changes the schedule concern-
ing the only one selected retailer and always leaves the other retailers untouched.
In addition, the mutation operator does not change the schedule before the
selected date t′ and leaves the beginning of the schedule unchanged.

3.5 Order-Changing Mutation (OM)

The Order-Changing Mutation (OM) operator takes one solution R and aims
at optimizing the routes without changing the assignment of the retailers to the
routes. It analyzes each route r1, r2, . . . , rT and tries to change the order of the
retailers on the route. For short routes of no more than ρ retailers (ρ is a con-
stant parameter of the algorithm), each permutation of the retailers is evaluated.
For longer routes, ρ! random permutations of the retailers are evaluated. If an
evaluated route outperforms the original one, the original route is replaced with
the best found alternative.
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It is worth noticing that the OM operator does not change the dates of
supplying the retailers, so it does not affect the feasibility of the solution.

4 Experiments

The experiments presented in this paper were performed using benchmark IRP
instances, published in [9], with the planning horizon T of 3 days, with 5, 10, 15 or
20 retailers, with the inventory costs between 0.01 and 0.05, and with different
locations of the facilities and various inventory, production and consumption
levels. All the benchmark instances concern a fleet of one vehicle. Table 2 presents
the list of the benchmark IRP instances used in the experiments.

Table 2. List of benchmark IRP instances used in the experiments

n = 5 5 instances with the planning horizon T = 3
and the inventory costs between 0.01 and 0.05

n = 10 5 instances with the planning horizon T = 3
and the inventory costs between 0.01 and 0.05

n = 15 5 instances with the planning horizon T = 3
and the inventory costs between 0.01 and 0.05

n = 20 5 instances with the planning horizon T = 3
and the inventory costs between 0.01 and 0.05

For each benchmark instance, the proposed EA-PKO-IRP algorithm was run
10 times in order to reduce the influence of the randomness of the algorithm on
the presented results. A number of different parameter settings were investigated,
taking into account the efficiency of the algorithm as well as the computing time
on a few selected problem instances, and the optimal parameter setting was used
in all the experiments. Table 3 presents the parameter settings of the EA-PKO-
IRP algorithm.

Table 3. Parameter settings of the EA-PKO-IRP algorithm

Description Symbol Value

Population size N 500

Number of offspring solutions M 2000

Number of parents for each offspring k T

Number of iterations τ 100

Replacement parameter κR 10

DM mutation parameter κM 5

OM mutation parameter ρ 6
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Fig. 2. Evolution of the values of the objective function in the successive iterations
of the evolutionary algorithm for 4 selected cases (the gray area shows the standard
deviation of the objective function value in the population)

Figure 2 presents the evolution of the values of the objective function in
the successive iterations of the evolutionary algorithm for 4 selected cases (the
gray area shows the standard deviation of the objective function value in the
population). Figure 2 (a) presents the typical behavior – the diversity of the
population is large at the beginning and narrows down in successive iterations.
Figures 2 (b), (c), (d) present some interesting behaviors: (b) – the diversity of the
population is increasing at the beginning to explore the search space (perhaps,
the initial population was not diversified enough); (c) – a similar effect occurs
after about 20 iterations (perhaps, after converging to a local minimum); (d) –
after converging to a local minimum after about 20 iterations, the algorithm is
trying to find a better solution, but recombinations probably lead to infeasible
solutions, and mutations cannot improve the local minimum.

Table 4 presents the results of the proposed EA-PKO-IRP algorithm on 20
benchmark IRP instances. The first column contains the name of the benchmark,
published in [9]. The second column recalls the exact optimum, published in [9].
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Table 4. Results of EA-PKO-IRP on 20 benchmark IRP instances. fopt denotes the
optimal value obtained using exact methods presented in [9].

Benchmark Optimum
(fopt)

Best of
10 runs (fb)

Mean of
10 runs (fm)

fb − fopt fm − fopt

abs1n5 1281.68000 1281.68000 1281.68000 0.00000 0.00000

abs2n5 1176.63000 1176.63000 1176.63000 0.00000 0.00000

abs3n5 2020.65000 2020.65000 2020.65000 0.00000 0.00000

abs4n5 1449.43000 1449.43000 1449.43000 0.00000 0.00000

abs5n5 1165.40000 1165.40000 1165.40000 0.00000 0.00000

abs1n10 2167.36999 2167.37000 2167.37000 0.00000 0.00000

abs2n10 2510.12988 2510.13000 2510.13000 0.00010 0.00010

abs3n10 2099.67993 2099.68000 2099.68000 0.00010 0.00010

abs4n10 2188.00999 2188.01000 2190.51000 0.00000 2.50000

abs5n10 2178.15000 2178.15000 2178.15000 0.00000 0.00000

abs1n15 2236.52999 2236.53000 2236.53000 0.00000 0.00000

abs2n15 2506.20996 2506.21000 2506.21000 0.00000 0.00000

abs3n15 2841.05999 2841.06000 2854.26000 0.00000 13.20000

abs4n15 2430.06999 2430.07000 2439.44400 0.00000 9.37400

abs5n15 2453.49999 2453.50000 2464.03900 0.00000 10.53900

abs1n20 2793.28999 2879.56000 2879.56000 86.27000 86.27000

abs2n20 2799.89999 2867.89000 2877.10000 67.99000 77.20000

abs3n20 3101.59999 3950.80000 3950.80000 849.20000 849.20000

abs4n20 3239.30999 3322.65000 3492.97300 83.34000 253.66300

abs5n20 3330.98999 3396.98000 3452.91900 65.99000 121.92900

The next two columns present the best and the mean result of the 10 runs of the
proposed EA-PKO-IRP algorithm. The last two columns present the difference
between the results and the exact optimum.

Table 5 presents the results of the proposed EA-PKO-IRP algorithm on 20
benchmark IRP instances after additional optimization of routes. The additional
optimization of routes is a post-processing technique applied to the best candi-
date solution found by the algorithm after the evolution has terminated. In this
step the order-changing mutation operator (OM) is applied to the best solution
found by the evolutionary algorithm.
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Table 5. Results of EA-PKO-IRP on 20 benchmark IRP instances after additional
optimization of routes. fopt denotes the optimal value obtained using exact methods
presented in [9].

Benchmark Optimum
(fopt)

Best of
10 runs (fb)

Mean of
10 runs (fm)

fb − fopt fm − fopt

abs1n5 1281.68000 1281.68000 1281.68000 0.00000 0.00000

abs2n5 1176.63000 1176.63000 1176.63000 0.00000 0.00000

abs3n5 2020.65000 2020.65000 2020.65000 0.00000 0.00000

abs4n5 1449.43000 1449.43000 1449.43000 0.00000 0.00000

abs5n5 1165.40000 1165.40000 1165.40000 0.00000 0.00000

abs1n10 2167.36999 2167.37000 2167.37000 0.00000 0.00000

abs2n10 2510.12988 2510.13000 2510.13000 0.00010 0.00010

abs3n10 2099.67993 2099.68000 2099.68000 0.00010 0.00010

abs4n10 2188.00999 2188.01000 2188.01000 0.00000 0.00000

abs5n10 2178.15000 2178.15000 2178.15000 0.00000 0.00000

abs1n15 2236.52999 2236.53000 2236.53000 0.00000 0.00000

abs2n15 2506.20996 2506.21000 2506.21000 0.00000 0.00000

abs3n15 2841.05999 2841.06000 2854.26000 0.00000 13.20000

abs4n15 2430.06999 2430.07000 2439.44400 0.00000 9.37400

abs5n15 2453.49999 2453.50000 2464.03900 0.00000 10.53900

abs1n20 2793.28999 2879.56000 2879.56000 86.27000 86.27000

abs2n20 2799.89999 2867.89000 2877.10000 67.99000 77.20000

abs3n20 3101.59999 3905.80000 3905.80000 804.20000 804.20000

abs4n20 3239.30999 3322.65000 3488.87300 83.34000 249.56300

abs5n20 3330.98999 3396.98000 3449.11900 65.99000 118.12900

5 Conclusions

In this paper an evolutionary algorithm for the Inventory Routing Problem (IRP)
is presented. Because of the intricacy of the IRP the proposed method employs
numerous mechanisms which, by utilizing the experience of practitioners in the
field, reduce the complexity of the task faced by the evolutionary optimizer. The
population initialization procedure starts with the procedure commonly used for
generating feasible solutions of the IRP. Subsequently, mutation operators are
used to obtain a diversified initial population fast. The operators proposed in the
paper retain the feasibility of solutions, thereby obviating the need for a repair
procedure. The work presented in this paper is a step towards utilizing domain
knowledge and good practices in evolutionary computation. Further work may
concern generalizing the presented approach to a wider range of optimization
problems.
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